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TECHNICAL MEMORANDUM X-53199

THE J-2 ENGINE AS AN ACOUSTICAL NOISE SOURCE

By

Richard N. Tedrick

Charles C. Thornton

Wade D. Dorland

ABSTRACT

In the development of the Saturn family of space vehicles, increasing em-

phasis has been placed upon the operating acoustic environments, because of the

increased engineering effort required to design structures and facilities for exis-

tence in these environments. As a result, a large number of programs have been

initiated to measure the acoustical properties of such engine configurations.

However, these usually describe only a very small class of rocket systems-pro-

pellants of liquid oxygen and kerosene. The J-2 engine however operates on

liquid oxygen-hydrogen propellants and has slightly higher specific impulse and

exhaust nozzle exit Velocity.

The staticfirings of the J-2 engine performed by the Rocketdyne Propulsion

Field Laboratory at Santa Susana, California, were monitored acoustically by

MSFC contractor personnel. Itwas found that the J-2 was quite similar in acoustic

output to the H-i engine, despite some differences in operating parameters

between the two. The acoustic output was found to be about 2.5 million ._wattswith

the frequency peaking in the 63 Hertz octave. A,_

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER





NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X- 53199

February 3, 1965

THE J-2 ENGINE AS AN ACOUSTICAL NOISE SOURCE

By

Richard N. Tedrick

Charles C. Thornton

Wade D. DorIand

RESEARCH AND DEVELOPMENT OPERATIONS

TEST LABORATORY



ACKNOWLEDGE ME NT

Appreciation is expressed to David N. Keast and Peter A. Franken of

Bolt, Beranek and Newman, Incorporated, for their assistance in the collection

of the acoustical data presented herein.



TABLE OF CONTENTS

Page

SUMMARY ......................................... i

INTRODUCTION ..................................... 2

A. Instrumentation ............................... 3

B. Calibration .................................. 6

C. Measurement Program .......................... 6

D. Examination of Data ........................... 10

CONCLUSIONS ...................................... 13

REFERENCES ...................................... 14

°.°

111



Figure

1.

o

3.

o

5.

6.

o

8.

,

10.

11.

12.

13.

LIST OF ILLUSTRATIONS

Title Page

Block Diagram of Audio Frequency Near-Field Acoustical

Measurement System ......................... 3

Block Diagram of Acoustical Data Reduction System ..... 5

Photo of VTS-2 Showing Near-Field Location and

Terrain .................................. 14

Photo of VTS-2 and Mid-Field Locations and Terrain .... t 5

Photo of VTS-2 Blockhouse and Terrain ............. 16

Drawing of Measurement Array of Mid-Field

Measurements .............................. 17

Average SPL Spectra Measured on J-2 Test Stand ...... 18

Average SPL Spectra Measured at 100 Meters 20

Degrees ................................. 18

Average SPL Spectra Measured at 100 Meters 30

Degrees ................................. 19

Average SPL Spectra Measured at 100 Meters 45

Degrees ................................. 19

Average SPL Spectra Measured at 100 Meters 60

Degrees ..... , ............................ 20

Average SPL Spectra Measured at 100 Meters 75

Degrees .................................. 20

Average SPL Spectra M_asured at 100 Meters 90

Degrees .................................. 21

Average SPL Spectra Measured at 100 Meters 105

Degrees .................................. 21

iv



LIST OF ILLUSTRATIONS (Cont'd)

Figure

i5.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Title Page

Average SPL Spectra Measured at i00 Meters, 120

Degrees ................................. 22

Average SPL Spectra Measured at t00 Meters, 135

Degrees .................................. 22

Average SPL Spectra Measured at 100 Meters, 150

Degrees ................................. 23

Average SPL Spectra Measured at 100 Meters, 165

Degrees ................................. 23

Average SPL Spectra Measured at 100 Meters, 180

Degrees ................................. 24

Average SPL Spectra Measured Along 30 Degree Bearing

for Each Doubling of Distance Beginning with 10

Meters ................................... 25

Average SPL Spectra Measured Along 30 Degree Bearing

for Each Doubling of Distance Beginning with 50

Meters ................................... 26

Average SPL Spectra Measured at the Far-Field Locations

Along 22 Degree Bearing ..................... 26

Average SPL Spectra Measured at the Far-Field Locations

Along 150 Degree Bearing ..................... 27

Average and Range of Deviations from Inverse Square Law

Propagation Along 30 Degree Bearing .............. 27

Overall Directivity Plot Around VTS-2 Test Stand ...... 28

Low Frequency Directivity Plots (Octave) ........... 28

Middle Frequency Direetivity Plots (Octave) ......... 29

V



-Figure

28.

29.

30.

31.

LIST OF ILLUSTRATIONS (Concluded)

Title Page

High Frequency Directivity Plots (Octave) ........... 29

Average and Spread of Data Values Measured at 100

Meters, 60 Degrees for i3 Tests ................. 30

Space Average Sound Pressure Level Spectrum at 100
Meters Radius ............................. 30

Acoustic Power Levels from J-2, H-l, and S-1 Engines . . 31

Table

I.

II,

LIST OF TABLES

Title Page

Measurement Location Parameters - 100 Meter

Semicircle .............................. 8

Measurement Location Parameters - 30 ° Bearing and
Stand Locations ................... ........ 9

Measurement Location Parameters - Far Field ...... 9

J-2 Acoustical Measurement Tabulation ............ 10

vi



Term

SOUND-FIELD

NEAR- FIE LD

FA R- FIE LD

NOISE- FLOOR

OCTAVE

DEFINITION OF TERMS

Defi_tion

A region containing sound waves.

The part of the sound field in the immediate vicinity of the
soun,d source. In general practice, near-field environments

are found to be non-linear and dimensions are not large
compared to the dimensions of the noise source. Thus the

relative dimensions of the noise scurce cannot be considered

to approximate a point. In this report, the near-field is

somewhat arbitrarily considered to exist within 50 feet of
the vehicle.

The part of the sound field where the sound waves are pro-

pagated as if in a free-sound field and where the wave front

approximates a plane wave. Also, the region is sufficiently
far removed from the source that it can be assumed that

all the energy originates at a point and is radiated according

to classical laws of physics. For purposes of reference,

the acoustic far-field is arbitrarily divided into two sub-

regions: the mid-field, which is between 50 and 1500 feet

from the source where free-field conditions and inverse

square law radiation are most likely to occur; and the

far-field, which is beyond t500 feet where atmospheric

heterogeneities and other diffusion effects have a consider-

able effect on measurement values.

The minimum RMS sound pressure level which can be

measured because of background acoustic noise or internal

electrical noise in the measurement system. In this report,
noise floors are analyzed in octave bands and the values are

indicated by an X on the center frequency of the individual
octave bands.

A bandwidth in the frequency spectrum where tile upper

frequency limit is twice the lower frequency, usually

identified by the center frequency.

vii



DE FINITION OF TERMS (Concluded)

Term Definition

SOUND PRESSURE

LEVEL (SPL) The sound pressure level, in decibels, of an RMS sound

pressure is 20 times the logarithm to the base l0 of the

ratio of this pressure to a reference pressure of 0. 0002
microbar.

POWER LEVEL

(PWL) The power level, in decibels, of an acoustic power is 10

times the logarithm to the base 10 of the ratio of the power
to a reference power of 10 -13 watts.

°°,

Vlll



TECHNICAL MEMORANDUM X-53199

THE J-2 ENGINE AS AN ACOUSTICAL NOISE SOURCE

SUMMARY

During the development of the Saturn family of large space vehicles, it

was found that the operating acoustic environments contributed materially to the

dynamic loading of the structure of the vehicle and its surrounding ground sup-

port and test equipment. The noise, now more than the mere annoyance which it

has been with smaller engines, had to be taken into account in the design and

development of vehicle structures and facilities. As a result, a large number of

programs have been initiated to measure the acoustical properties of various

large engine configurations. These, in nearly every instance, described only

a very small class of rocket systems, propellants of liquid oxygen and kerosene.

The J-2 engine, however, operates on liquid oxygen-hydrogen propellants and

has slightly higher specific impulse and exhaust nozzle exit velocity. It was

therefore important to discover if these differences would affect the performance

of the rocket engine as a noise source.

The static firings of the J-2 engine performed by the Rocketdyne Propulsion

Field Laboratory at Santa Susana, California, were monitored acoustically by

MSFC contractor personnel. The program was patterned after those used for

the Saturn S-I and the H-l and F-l engines, although the local terrain caused

some modification of transducer placement. It was found that the J-2 was quite

similar in acoustic output to the H-l engine, despite the differences in operating

parameters between the two. In fact, the acoustical outputs appeared to be more

related to the total thrust than any of the individual engine parameters. The

acoustic output was found to be about 2.5 million watts with the frequency peaking

in the 63 Hertz octave.



INTRODUC TION

In the development of the Saturn booster vehicles, increasing emphasis

has been placed on the operating acoustic enviromnents of the boosters. This

situation is a result of the severe nature of large rocket system acoustic environ-

ments and the increased engineering effort required to design structures and

facilities to exist in these environments. As the design engineering has become

more sophisticated, large amounts of information regarding acoustic character-

istics have been required. To meet the requirement data describing the acousti-

cal environment generated by the noise mechanism of turbulent rocket exhausts,

a large number of measurement projects in support of static test and launch

operations have been instituted and a large amount of data have become available

(Refs. 1 thru9).

However, these results usually describe only a very small class of rocket

systems (propellants of liquid oxygen and kerosene, specific impulse in a range

of 250 to 270, and an exhaust nozzle velocity of approximately 8000 feet per

second). A special interest was therefore shown in instituting an acoustical

measurement program for the J-2 rocket engine. This engine operates on liquid

oxygen-hydrogen propellants at a specific impulse in the 275-290 seconds range

with an exhaust nozzle exit velocity of approximately 9000 feet per second. Early

in 1963, the engine was in the initial stages of development, and static testing

was being performed only at the Rocketdyne Propulsion Field Laboratory located

in the Santa Susana Mountains in Ventura County, California. In common with

other rocket development, J-2 testing operations were extremely erratic in

scheduling, duration, and performance. Moreover, the mountainous terrain in

which the test facilities were located posed difficulties in forming acoustical

measurement programs to provide meaningful data. Despite these problems,

the requirements for acoustical data on high performance, cryogenic engines

made an acoustical survey of the J-2 engine necessary, and the results of the

survey are included in this report.

It was found that the acoustical environment of the J-2 is similar to the

noise generated by liquid oxygen-kerosene rockets (F-1 and H-1 engines and the

Saturn I booster). The spectra of the sound pressure levels at i00 meters from

the test stand peak in the octave bandwidths centered at 31 Hertz and 63 Hertz;

the directivity peaks rather sharply at 45 degrees, and the acoustical efficiency

of the jet stream is calculated to be 0.3 percent.
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A. INSTRUMENTATION

Measuring the noise levels andacoustic spectra in the vicinity of
large rocket engines and spacevehicle boosters (at distances up to one kilometer
during static testing under a variety of climatic andfield conditions with the
necessary accuracy, reliability, and format) necessitated the design and testing
of a completely newacoustic data instrumentation system (Ref. 10). The data
acquisition system shownin Figure 1 consists of a microphone with a preamplifier

SIGNAL CONDITIONING PATCH TAPE
MICROPHONE FIELD UNIT LINE UNiT ELECTRONICS PANEL RECORDER

NM-135 MSFC 1162 T MSFC IIG2R MSFC 762

!

0D|0H|l|lHliiliOi|l|l t

5YSTE M
CONTROLLER

m m

®
L

_--3/J
l

I
DIHHIIIIIHNII Nill HBNIIIIIIIIRHIOIIHIHIIHII_

J

FIGURE I. BLOCK DIAGRAM OF AUDIO FREQUENCY NEAR-FIELD

ACOUSTICAL MEASUREMENT SYSTEM

followed by a step attenuator and decade amplifier. The microphone is a modi-

fied hydrophone, Model NM-135, manufactured by the Chesapeake Instrument

Company. This microphone consists of a self-generating piezo-electric sensing

element that is sealed against precipitation and water vapor leakage. It is

mounted on a vibration isolating base and has its signal output through a BNC

coaxial connector. Its dynamic range is rated for pressure levels from 80 to

over 180 decibels (Ref. 0. 0002 microbar). The microphone sensitivity is

nominally minus 94 db (Ref. 1 volt per microbar). Its nominal internal capacity
is 1600 picofarads. The microphone is connected via a shielded cable to a

solid-state preamplifier which acts essentially as an impedance matching unit.

It has unity voltage gain and its noise floor is effectively that of the complete

system. To maintain adequate low frequency response, the input impedance of

the preamplifier must be of the order of several megohms. The output impedance

of the preamplifier is low enough to permit the use of a conventional attenuator.
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The attenuator has a forty db range and is preset in the field according to the
expectedrange of soundpressure level. A decadeamplifier with a fixed gain of
40 db follows and is terminated into a coupling transformer specially designed
for adequatelow frequency responseand signal handling capacity. It is carefully
shielded and its secondary winding is balancedwith respect to ground. A pair
of battery operated, floating ground, solid-state line amplifiers supply the
necessary signal power at a maximum signal level of about 2 volts RMS. The
electronics thus described comprise the field unit which is placed in its weather
proof case in the vicinity of the microphone at the individual measurement po-
sition.

For transmission of the signal to the recording facility, standard U. S.
Army communication field wire is used instead of the conventional coaxial cable.
Use of this field wire substantially reduces cost and results in improved reli-

ability and flexibility in field situations. To conserve signal power, the field

wire transmission line is not terminated in its characteristic impedance at the

recording facility, but is directly connected to a pair of floating line amplifiers

with high input impedance. At the output of these amplifiers there is another

coupling transformer to isolate the line from the rest of the equipment and to

maintain electrical balance. These components comprise the line unit and are

identical with their counterparts in the field unit.

The output of the line unit is connected to the signal conditioning unit

which contains a 50 db step attenuator that is adjustable in five db steps followed

by a field effect transistor input stage and a solid state buffer amplifier of approx-

imately 10 db voltage gain. A VU meter is provided to monitor the output voltage

to the tape recorder. The purpose of the signal conditioning unit is to measure

and adjust the signal level for best use of the available dynamic range of the tape

recorder units on which the signal is recorded for later analysis. The usual

procedure is to adjust the individual channels for full scale levels for any de-

sired reference SPL at the microphone. For this condition, the channel can be

adjusted for zero VU at an output signal level of 400 millivolts RMS. Because

instrumentation tape recorders are usually calibrated for 100 percent modulation,

the channel dynamic range is thus established to be 35 db below any arbitrary

reference value of SPL. Considering that the range of noise spectra can often

approach this value, it is obvious that care must be taken to normalize the meas-

urement channels to obtain the best performance from the system.

The block diagram of the acoustical data reduction system used in the

octave band reduction for this report is shown in Figure 2. This system used a

fourteen channel instrumentation tape recorder as its input. Thetape generated

from one or more of the systems outlined above is played from it through a patch
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OCTAVE BAND AUTOMATIC DATA REDUCTION SYSTEM

FIGURE 2. BLOCK DIAGRAM OF ACOUSTICAL DATA

REDUCTION SYSTEM

panel into the reduction system. One channel at a time is chosen through a

pre-programmed patch panel controller and played through a preamplifier. The

preamplifier output is then fed into t5 parallel data channels. One channel

accepts the overall signal while the other fourteen contain octave band filters

from 1 through 8000 Hertz. After passing the filter, the signal is detected,

squared, and integrated. Various indicators and VU meters are used to inform

the operator that the signal is not being clipped or near the noise floor of the data

reduction system. The integrators can be pre-programmed in length of integra-

tion time so as not to lose the statistical veracity of the bandwidth-integration

time product. An automatic scanning device samples each integrator sequentially

and outputs them through a logarithmic converter. At the output of this con-

verter, various data display or recording devices can be used. The two most

often utilized are an X-Y plotter which is used to plot sound pressure level ver-

sus frequency, and a card punch by which an A to D converter stores, in perm-

anent form, the sound pressure levels of the overall and the fourteen octaves.



B. CALIBRATION

To calibrate the microphone a constant soundpressure level, is
.generatedby means of a pistonphonein the frequency range of 0. i to 50 Hertz.
The cavity of the pistonphone is large enoughto insure that the transition from

adiabatic to isothermal behavior of the gas in the cavity occurs well below 0.1

Hertz. By varying the input resistance of the amplifier, the response of the

microphone-amplifier combination at low frequencies could be determined. The

tests showed that the open circuit response of the microphone is uniform down to

below 0.1 Hertz. Hence, acoustic leakage through the sensitive elements of the

microphone is negligible at least down to 0.1 Hertz. When connected to an amp-

lifier of a given input resistance, the response of the combination is determined

only by the microphone and cable capacitance and the input resistance of the

amplifier (Ref. t0). The response calculated from the known values of capaci-

tance and resistance accounts for the observed drop in response. Since the

input resistance of the preamplifier used in the present system is 3 X 108 ohms,

the drop of the response at 1 Hertz is less than 1 db. Appropriate corrections

to account for this can easily be applied if desired. The open circuit voltage

calibration was obtained in a planewave tube below 600 Hertz, and above that

frequency in an anechoic chamber. The angle of incidence of the sound field

with respect to the axis of the microphone was 90 degrees inside the anechoic

room. In the planewave tube the angle of incidence was not important because

the directivityof this microphone is negligible below about 1000 Hertz. To obtain

appropriate corrections for the deviations of the free-field response of the

NM-135 microphone, a number of microphones were tested and appropriate

corrections obtained. These corrections were added to the sound pressure levels

obtained from analysis of the data recorded from this system. The data show

the response of the microphone amplifier system to be fiatfrom one Hertz to

12kHz, plus or minus approximately i db.

C. MEASUREMENT PROGRAM

In the evaluation of rocket engines as noise sources, it is necessary

to attempt to account for and measure all of the acoustical energy which might be

radiated from such a source. One generally accepted measure of this is what is

known as the acoustical power level (Ref. ll). This power level investigation,

to be rigorous, would require sound pressure measurements on spheres sur-

rounding the sources at different radii. K the radius is large enough that the

measurements are made in the acoustic far-field, the total radiated acoustic

power of the source is found by integrating the energy flux over the surface of

the sphere. In many cases, it is possible to take advantage of the near symmetry

of the sound field. Where rotational symmetry around the axis of the sound field



may be assumed, measurements may be made only on a semicircle around the
soundsource. Suchconditions are usually assumedto exist when the engine to
be tested is located such that either the undeflected flame or the deflected exhaust
has its axis within about 30 degrees of the horizontal. The one basic assumption
to this procedure is that the soundsource is a point located at or near an infinite
flat planewhose coefficient of reflectivity is unity. In this ease, exact acoustic
power measurementswould require soundmeasurements onarcs above the
groundplane definedby constant radius R and constant angle 0. The pressures

as functions of angle are m'easured on the ground and assumed to be constant on

the arcs in the upper hemisphere. The total power radiated is then given by

WA _ vr r 2 fvr p2 (0) sin 0d0
pc 0

Whe re W A =

P(O) =

Acoustic Power

rms sound pressure on the ground at radius r, measured

from the midpoint of the source

= angle between the measurement and the eenterline of the exhaust

= velocity of sound in air

= density of air

In the actual acoustic power level measurement situation,the ideal case

is very seldom reached. In the J-2 program, especially, the infinite fiat plane

did not exist. In fact, as can be seen from Figures 3, 4, and 5, the idealized

acoustic point source at or near an infinitely flat reflecting plane was not even

closely approximated. However, for reasons already stated, it was necessary

to make some measurements of the acoustic spectra and power levels. Since the

J-2 static test facility at Santa Susana, California, was built in a natural bowl,

it was necessary to compress most of the mid-field measurements, upon which

an acoustic power level would be based, into the bowl itself. A 100-meter radius

was chosen because of the limitations of the topography. Microphones were

placed at 20 degrees from the center line of the deflected exhaust and at i5

degree increments from 30 through 180 degrees. In addition, measurements

were made at 10, 20, 40, 50, 80, 150, 200, 300, and 400 meters out the 30 de-

grees bearing. This allows evaluation of the data collected at the i00 meter
radius to be evaluated in terms of whether or not it was collected in the acoustic

far-field. This line also can be used to compare with other test configurations

on later firings of the J-2 in other areas and with data collected along similar

bearings from other large engines. Figure 6 shows the relative locations of the

mid-field array around the J-2 static test site. Because of a severe lack of

electronic equipment available to the program in this area, it was not possible to

7



simultaneously record at each of the indicated locations. This severely restricted
the amount of data which could be collected at any given microphone location and
thus restricted the amount of repeatable data which were collected.

Table I shows the measurement location parameters for the t00 meter
semicircle. Becauseof the rocks, boulders, gullies, and other installations in

TABLE I

MEASUREMENTLOCATION PARAMETERS- 100METER SEMICIRCLE

hanj,e From En_dne }ear'ini[ F:Or-L De: '!L 't 1 E]e aitcn Above }{orlzonta] F]ane

Zent(r]_ne - Meters Exhallst Pe_,'ees at Tm[:in_e_en% Faint of 7lame
Deflector

]]omi ha! Act ua! ![o<iTa] An%ua] E,e6rees

10C, ';<).0 2C 21 -9.<
1 O0 ,)<. ,n }0 _ n, -2.0

] c_O ,'_1 . n ,1_5 iJ +_. t

700 <,.*_ 60 ::: *b.!:

i OC _ _. ! 7" 7n +9. ;'

100 ] OO, < _O _& +] O. )_

I00 ,,r,.( ] C,_ 1 ,i_ +12._£;

1OO ]O<.O [20 !18 +12.)=

_E 33 +] <. 6,100 ] 0),.. 0 • _,

1OO I 150 l!J_ +lL.d
] OO _ O] q ] 6c_ ](]_ +19. ]

] DO 103. O ] ,_@ ] 77.-} +] 8. O

the bowl area, it was not always possible to locate the microphone mount at the
exact range and bearing called for. In Table I, both the nominal and actual ranges

and bearings are tabulated. Also included in Table I are the microphone eleva-

tions in degrees above or below the horizontal plane through the impingement

point on the deflector. This then is a measurement of the deviation of the bowl

from the assumed horizontal. Table II gives similar information for those

measurements which were located along the 30 degree bearing line. Relatively

at least, the 30 degree bearing was more uniformly horizontal than was the 100

meter semicircle.

For structural reasons, it is quite often necessary to ascertain the sound

pressure levels which impinge upon the vehicle at several points along the ve-

hicle's skin. Five such stand measurements were made on this J-2 test program.

Their location in range from the engine center line and the height above the

nozzle plane are also shown in Table II.



TABLE II

MEASUREMENT LOCATION PAIbkMETERS - 30 ° BEARING AND

STAND LOCATIONS

]:]]_<ai,_> I o' ,: !{<:r_.:<,-,rla [ _!<

ql [,-:, 5:-r,,:_r* i_iut _f !']n_:_

I)F '," t' :tON

!b, N', ,S

+,

-2._

_p.i

-i.

+_ .0

Table III shows the far-field measurement locations. A range of the

measurement in both meters and feet from the engine center line is shown along

TABLE III

MEASUREMENT LOCATION PARAMETERS - FAR FIELD

Range Meters (ft) Azimuth Bearing

from Eng. from T. Degrees

Centerline North from Exh.

365 (1200) 63° s _2.5 °

800 (2620) 67.5°E 1_7 °

1385 (_550) 7_ ° S 15L.5 °

O O

780 (2560) 302.5 g 22

1300 (L260) 306 ° E 22.5 °

157o (6]30) 305 ° E 2h.5 °

Elevation

Meters (ft)

CW above MSL

609 (2000)

585 (192_)

502 (1650)

61_ (2020)

556 (_83o)

Elevation re

Nozzle Exit Plane

On Stand_ Meters (ft)

<5._ (_5o)

+22.8 (75)

-6o. 8 (200)

.5>.6 (17o)

0

-6.1 (20)

9



with the azimuths from true north. To conform with the format of the other

table, this azimuth has been converted into bearing in degrees from the center

line of the exhaust. The elevation of the measurement point is also tabulated

above mean sea level and above or below the nozzle exit plane on the stand.

D. EXAMINATION OF DATA

A total of 129 valid measurements were taken during this program

which covered 15 static tests of the J-2. Several additional measurements were

attempted but were lost due to temporary difficulties with instrumentation or

cabling. The valid overall sound level measurements are tabulated in Table IV.

TABLE IV

J-2 ACOUSTICAL MEASUREMENT TABULATION

Overall Sound Pressure Levels

(to _he neares_ 0.5 dB re: O.DO02 HIcrobJr)

1:_._ ¸,

i_/j

I

1 ',,'. ::, 1¸',¸'¸ ¸¸ _,7,o

:tJ_,_ _h:,. ¸ :h.,

IT,', ¸¸ Jl ,_ _1%

1:_ ¸,

l,o,n

L_';.'

I

Lh2. ¸

I

Because of the known accuracies of the instrumentation system and of the data

reduction equipment, the sound pressure levels are tabulated to the nearest 0.5

decibels. In general, it might be said that there is good repeatability demon-

strated in these data from test to test. In each instance, data were taken at the

100 meter 60 degree point so that theconsistency of the engine from test to test

10



might be investigated. Since this soundpressure level varied in the overall,
from 139.0 thru 141.0, the engineappears to have beenacousticaNy stable. A
few points in isolated instances appear to have varied slightly more than did this
anchor point. However, it may be said in general that the repeatability of the
measuredacoustic datawas much higher than might be anticipated for a series
of R&D firings.

The measurements which are tabulated in overall soundpressure level
in Table IV are averaged and presented in octaveband and overall soundpressure
levels in Figures 7 through 29. The spectra are shownin terms of octave bands
whosecenter frequencies begin in most casesat 4 Hertz andend at 8000Hertz.
Figure 7 showsthe average SPL spectra measured on the J-2 test stand, BTS-2,
at SantaSusana, California, at 5.7, t2, and 32meters abovethe nozzle plane.
These average spectra all show essentially the same characteristics with the
exception of a significant shift downward in peak frequency as one moves away
from the nozzle plane.

Figures 8-19 present the average soundpressure level spectra measured
along the i00 meter radius semicircle from 20 degrees to 180degrees. The most
noticable characteristic of these curves is their dissimilarity. Many of these
curves show small peaks or notches which may be the result of reflection or in-
terferences causedby other structures or topographic features in the vicinity
of the microphone location. Figure 20 contains the average SPL spectra meas-
ured along the 30degree bearing for each doubling of distance beginning with 10
meters. Thus are presented the data from i0, 20, 40, 80, t50, and 300 meters.
Thesedata above 16Hertz clearly showthe effect of increasing range on decreas-
ing high frequency content. They also show the inverse square law to hold true in
the overall for about 40 meters. Figure 21 presents the same type of data in the
same format but for those measurementsalong the 30degree bearing which
doubledthe distance beginning at 50 meters. The points were: 50, 100, 200, and
400 meters. The average soundpressure level spectra measured in the far-field
along the 22 degreeand 150degreebearings are presented in Figures 22and 23.
These show the characteristic lack of high frequency which has beennoted from
static test firings of other vehicles.

In Figure 24are seen the data which were taken from points along the
30degree bearing. These overall datawere averaged and plotted against an
arbitrary reference.. This scale is the deviation from the classical inverse
square law. Becauseof the extreme unevennessof the groundplane and because
of both obstructions and reflecting surfaces in the area, the curve is not at all
smooth, as in the idealized case. However, it does slowly fall away from the
inverse square law. Also shownin Figure 24are the deviations of the data
taken at each range.
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Figures 25, 26, 27, and 28 showthe directivity associated with the J-2
as fired at SantaSusana. Figure 25contains the overall directivity. The maxi-
mum lobe occurred quite sharply at 45degrees. The low frequencies (the
octaves from 4 to 32 Hz) hada broader directivity especially behind the test
stand (the exhaust jet flow was taken as 0° azimuth), but still in many instances
showeda sharp peak at 45degrees. This is shownin Figure 26. The middle
frequencies, or those octaves from 63 through 500Hertz, have a more sharply
defined directivity pattern. They also peak at 45degrees, although they are, in
some instances, more broad out toward 60degrees. The middle frequencies
were especially affected by the test stand itself and showthe lowest levels toward
180degrees. As seen in Figure 28, the higher frequencies, those octaves from
t000 to 8000Hertz, have the broadest directivity. They, too, show a slight peak
at 45 through 60degrees but come the closest to havinga uniform directivity.
Since the middle frequencies shownin Figure 28are, in nearly every instance,
the frequencies at which the respective measurement spectra peak, their di-
rectivity is that which was most closely followed by the overall.

As was mentioned earlier, there were not enoughmeasurementchannels
with which to completely instrument the entire program during each test. There-
fore, the one microphone at 100meters 60 degreesbearing was chosen as an
anchor point for monitoring the consistency of the acoustical signal from test to
test. The average and spread of the measured datavalues at this location both
in the overall and in the octaves from four to 8000Hertz are shownin Figure 29.
The overalls were found to spread approximately plus or minus I i/2 decibels.
The octave spread in those frequencies above31 i/2 Hertz was somewhatgreater.
However both the spread of the data and the general shapeof the envelopeverified
the consistency of the J-2 engine as an acoustical noise source.

The acoustic power level discussedearlier is a very convenient yardstick
in the measurement of various classes of rocket and spacevehicle engines be-
cause it refers directly to the power which is converted to acoustical energy. A
soundpressure level measurement on the other handis expressed in terms of a
ratio of pressures at a given point, For quite obvious reasons, it is not always
possible to physically occupy identical points around the various test standsand
engines. Dependinguponthe wave length of the peak frequency within the meas-
ured spectra, these arbitrary points also may not always fall within the acoustic
far-field of the enginebeing tested. For these and other reasons, the acoustic
power level is almost universally acceptedas a useful method for the assessment
of the noise source. The acoustic power level and the space average soundpres-
sure level from which it is derived for the J-2 engine are shownin Figure 30.
In Figure 31 this power level spectrum is again shown, and plotted with it are the
corresponding power level spectra from the H-1 and the S-i configurations. Since

12



the H-1 and J-2 are largely comparable engines in thrust level, it is not sur-

prising that they agree as well as they do. In three of the octaves ( 16, 31.5, and

63 Hz) there is a wide disparity. This may very likely be the result of the dif-

ference in the test configurations from which the respective PWL spectra were

obtained. Present plans call for subsequent test series of both the H-1 and J-2

engines to be performed on more identical stands. It is hoped that the questions

surrounding these three octaves can be resolved at that time.

The amount of energy which was converted into acoustical noise was cal-

culated from this power level. It amounted to 2.5 x 106 watts which is 0.3 per-

cent of the calculated jet stream energy. This is slightly less than the 0.5 per-

cent found in tests of the S-1 and H-1 engines.

CONC LUSIONS

Despite the difficulties encountered in scheduling, in terrain, and in dura-

tion and performance of the engine, this J-2 acoustic test program has contributed

significantly to the store of knowledge about rockets and rocket engines as noise

sources. On the whole it may be said that the J-2 engine showed a remarkable

consistency in performance despite changing engine parameters during this R& D

phase. Itwas found that the acoustical environment of the J-2 is similar to the

noise generated by liquid oxygen-kerosene rockets (F-I and H-I engines and the

Saturn I booster). The spectra of the sound pressure level at I00 meters from

the test stand peak in the octave band centered at 31 and 63 Hertz. The overall

directivity peaked rather sharply at 45 degrees; however, the spectral directivity

is very "frequency" depehdent. The acoustical efficiency of the jet stream is cal-

culated to be 0.3 percent. Subsequent tests of the J-2 on other test stands and in

other topographic areas will be required to definitively compare the acoustical

performance of the J-2 with other types of engines.
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FIGURE 3. PHOTO OF VTS-2 SHOWING NEAR-FIELD LOCATION

AND TERRAIN
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FIGURE 4. PHOTO OF VTS-2 AND MID-FIELD LOCATIONS AND TERRAIN
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FIGURE 5. PHOTOOF VTS-2 BLOCKHOUSEAND TERRAIN
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